

Jay Heizer Barry Render Chuck Munson Amit Sachan


About Pearson

Pearson is the world's learning company, with presence across 70 countries worldwide. Our unique insights and world-class expertise comes from a long history of working closely with renowned teachers, authors and thought leaders, as a result of which, we have emerged as the preferred choice for millions of teachers and learners across the world.

We believe learning opens up opportunities, creates fulfilling careers and hence better lives. We hence collaborate with the best of minds to deliver you class-leading products, spread across the Higher Education and K12 spectrum.

Superior learning experience and improved outcomes are at the heart of everything we do. This product is the result of one such effort.

Your feedback plays a critical role in the evolution of our products and you can contacu us - reachus@pearson.com. We look forward to it.

OPERATIONS MANAGEMENT

Sustainability and Supply Chain Management

JAY HEIZER

Jesse H. Jones Professor of Business Administration Texas Lutheran University

BARRY

RENDER

Charles Harwood Professor of Operations Management Graduate School of Business Rollins College

CHUCK MUNSON

Professor of Operations Management Carson College of Business Washington State University

SACHAN

Assistant Professor of Operations Management Indian Institute of Management, Ranchi

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Acknowledgments of third-party content appear on the appropriate page within the text.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Authorized adaptation from the United States edition, entitled *Operation Management: Sustainability and Supply Chain Management, 12th Edition*, ISBN 9780134130422, by Jay Heizer, Barry Render, Chuck Munson, published by Pearson Education, Inc. Copyright © 2017.

Indian Subcontinent Adaptation

Copyright © 2017 Pearson India Education Services Pvt. Ltd

ISBN 978-93-325-8426-6 eISBN 978-93-530-6296-5

First Impression

All rights reserved. This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior written consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser and without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of both the copyright owner and the publisher of this book.

This edition is manufactured in India and is authorized for sale only in India, Bangladesh, Bhutan, Pakistan, Nepal, Sri Lanka and the Maldives. Circulation of this edition outside of these territories is UNAUTHORIZED.

Published by Pears'on India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher's prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to remove any material in this eBook at any time.

Head Office: 15th Floor, Tower-B, World Trade Tower, Plot No. 1, Block-C, Sector-16,

Noida 201 301, Uttar Pradesh, India.

Registered Office: 4th Floor, Software Block, Elnet Software City, TS-140, Block 2 & 9,

Rajiv Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India.

Fax: 080-30461003. Phone: 080-30461060

www.pearson.co.in, Email: companysecretary.india@pearson.com

To Karen Heizer Herrmann, all a sister could ever be

J.H.

To Donna, Charlie, and Jesse

B.R.

To Kim, Christopher, and Mark Munson for their unwavering support, and to Bentonville High School teachers Velma Reed and Cheryl Gregory, who instilled in me the importance of detail and a love of learning

C.M.

To Parents, Family, and Friends

A.S.

ABOUT THE AUTHORS

Professor Emeritus, the Jesse H. Jones Chair of Business Administration, Texas Lutheran University, Seguin, Texas. He received his B.B.A. and M.B.A. from the University of North Texas and his Ph.D. in Management and Statistics from Arizona State University. He was previously a member of the faculty at the University of Memphis, the University of Oklahoma, Virginia Commonwealth University, and the University of Richmond. He has also held visiting positions at Boston University, George Mason University, the Czech Management Center, and the Otto-Von-Guericke University, Magdeburg.

Dr. Heizer's industrial experience is extensive. He learned the practical side of operations management as a machinist apprentice at Foringer and Company, as a production planner for Westinghouse Airbrake, and at General Dynamics, where he worked in engineering administration. In addition, he has been actively involved in consulting in the OM and MIS areas for a variety of organizations, including Philip Morris, Firestone, Dixie Container Corporation, Columbia Industries, and Tenneco. He holds the CPIM certification from APICS—the Association for Operations Management.

Professor Heizer has co-authored 5 books and has published more than 30 articles on a variety of management topics. His papers have appeared in the Academy of Management Journal, Journal of Purchasing, Personnel Psychology, Production & Inventory Control Management, APICS—The Performance Advantage, Journal of Management History, IIE Solutions, and Engineering Management, among others. He has taught operations management courses in undergraduate, graduate, and executive programs.

Professor Emeritus, the Charles Harwood Professor of Operations Management, Crummer Graduate School of Business, Rollins College, Winter Park, Florida. He received his B.S. in Mathematics and Physics at Roosevelt University, and his M.S. in Operations Research and Ph.D. in Quantitative Analysis at the University of Cincinnati. He previously taught at George Washington University, University of New Orleans, Boston University, and George Mason University, where he held the Mason Foundation Professorship in Decision Sciences and was Chair of the Decision Sciences Department. Dr. Render has also worked in the aerospace industry for General Electric, McDonnell Douglas, and NASA.

Professor Render has co-authored 10 textbooks for Pearson, including Managerial Decision Modeling with Spreadsheets, Quantitative Analysis for Management, Service Management, Introduction to Management Science, and Cases and Readings in Management Science. Quantitative Analysis for Management, now in its 13th edition, is a leading text in that discipline in the United States and globally. Dr. Render's more than 100 articles on a variety of management topics have appeared in Decision Sciences, Production and Operations Management, Interfaces, Information and Management, Journal of Management Information Systems, Socio-Economic Planning Sciences, IIE Solutions, and Operations Management Review, among others.

Dr. Render has been honored as an AACSB Fellow and was twice named a Senior Fulbright Scholar. He was Vice President of the Decision Science Institute Southeast Region and served as Software Review Editor for *Decision Line* for six years and as Editor of the *New York Times* Operations Management special issues for five years. For nine years, Dr. Render was President of Management Service Associates of Virginia, Inc., whose technology clients included the FBI, NASA, the U.S. Navy, Fairfax County, Virginia, and C&P Telephone. He is currently Consulting Editor to *Pearson Press*.

Dr. Render has received Rollins College's Welsh Award as leading Professor and was selected by Roosevelt University as the recipient of the St. Claire Drake Award for Outstanding Scholarship. Dr. Render also received the Rollins College MBA Student Award for Best Overall Course, and was named Professor of the Year by full-time MBA students.

Professor of Operations Management, Carson College of Business, Washington State University, Pullman, Washington. He received his BSBA *summa cum laude* in finance, along with his MSBA and Ph.D. in operations management, from Washington University in St. Louis. For two years, he served as Associate Dean for Graduate Programs in Business at Washington State. He also worked for three years as a financial analyst for Contel Telephone Corporation.

Professor Munson serves as a senior editor for *Production and Operations Management*, and he serves on the editorial review board of four other journals. He has published more than 25 articles in such journals as *Production and Operations Management*, *IIE Transactions, Decision Sciences, Naval Research Logistics, European Journal of Operational Research, Journal of the Operational Research Society*, and *Annals of Operations Research*. He is editor of the book *The Supply Chain Management Casebook: Comprehensive Coverage and Best Practices in SCM*, and he has co-authored the research monograph *Quantity Discounts: An Overview and Practical Guide for Buyers and Sellers*. He is also coauthor of *Managerial Decision Modeling with Spreadsheets* (4th edition), published by Pearson.

Dr. Munson has taught operations management core and elective courses at the undergraduate, MBA, and Ph.D. levels at Washington State University. He has also conducted several teaching workshops at international conferences and for Ph.D. students at Washington State University. His major awards include being a Founding Board Member of the Washington State University President's Teaching Academy (2004); winning the WSU College of Business Outstanding Teaching Award (2001 and 2015), Research Award (2004), and Service Award (2009 and 2013); and being named the WSU MBA Professor of the Year (2000 and 2008).

Assistant Professor of Operations Management, Indian Institute of Management (IIM), Ranchi since June 2011. He holds a B.Tech. degree in Industrial Engineering from the Indian Institute of Technology (IIT), Roorkee and is also a Fellow (Integrated MBA and Ph.D) from Management Development Institute (MDI), Gurgaon. Before joining IIM Ranchi, he worked as a Service Manager of Industrial Engineering Group in AON Hewitt. He has published articles in journals such as International Journal of Physical Distribution & Logistics Management, International Journal of Productivity and Performance Management, International Journal Services and Operations Management, International Journal of Business Performance and Supply Chain Modelling, Computers in Human Behavior, Asian Case Research Journal, International Journal of Services Technology and Management and Journal of Cases on Information Technology. Professor Sachan has attended Global Colloquium on Participant-Centred Learning (GLOCOLL) at Harvard Business School campus, Boston, US. He has also attended Business Accreditation Seminar and Assurance of Learning Seminar organized by AACSB. Professor Sachan is recipient of the Dewang Mehta Award for Best Professor in Operations Management in November 2012. Professor Sachan teaches operations management (core and elective courses) at MBA, Executive MBA and Ph.D. levels in IIM Ranchi. His teaching, research and consulting interests are focused on services operations management and E-services.

CHUCK MUNSON

AMIT SACHAN

Brief Table of Contents

PART ONE	Introduction to Operations Management 1
Chapter 1 Chapter 2 Chapter 3 Chapter 4	Operations and Productivity 1 Operations Strategy in a Global Environment 31 Project Management 63 Forecasting 113
PART TWO	Designing Operations 171
•	Design of Goods and Services 171 nent 5 Sustainability in the Supply Chain 207
-	Managing Quality 227 ment 6 Statistical Process Control 261
•	Process Strategy 297 ment 7 Capacity and Constraint Management 327
Chapter 9	Location Strategies 361 Layout Strategies 391 Human Resources, Job Design, and Work Measurement 433
PART THREE	Managing Operations 471
-	Supply Chain Management 471 ment 11 Supply Chain Management Analytics 503
Chapter 12	Inventory Management 521
-	Aggregate Planning and S&OP 569
•	Material Requirements Planning (MRP) and ERP 605
•	Short-Term Scheduling 643
•	Lean Operations 679 Maintenance and Reliability 705
Uliapter 17	Maintenance and Reliability 705

Table of Contents

About the Authors

Preface to the Indian Edition

Preface

PART ONE Introduction to Operations	Management 1
Chapter 1 Operations and Productivity 1 GLOBAL COMPANY PROFILE: HARD ROCK CAFE 2	Chapter 2 Operations Strategy in a Global Environment 31
What Is Operations Management? 4	GLOBAL COMPANY PROFILE: BOEING 32
Organizing to Produce Goods and Services 4	A Global View of Operations and Supply Chains 34
The Supply Chain 6	Cultural and Ethical Issues 38
Why Study OM? 6	Developing Missions and Strategies 38
What Operations Managers Do 8	Mission 38
The Heritage of Operations	Strategy 38
Management 9 Operations for Goods and Services 12	Achieving Competitive Advantage Through Operations 39
Growth of Services 13	Competing on Differentiation 39
Service Pay 13	Competing on Cost 41
The Productivity Challenge 14	Competing on Response 42
Productivity Measurement 16	Issues in Operations Strategy 42
Productivity Variables 17	Strategy Development and Implementation 45
Productivity and the Service Sector 20	Key Success Factors and Core Competencies 45
Current Challenges in Operations	Integrating OM with Other Activities 46
Management 21	Building and Staffing the Organization 48
Ethics, Social Responsibility, and	Implementing the 10 Strategic OM Decisions 48
Sustainability 22 Summary 23	Strategic Planning, Core Competencies, and Outsourcing 48
Key Terms 23	The Theory of Comparative Advantage 50
Ethical Dilemma 23	Risks of Outsourcing 50
Discussion Questions 23	Rating Outsource Providers 52
Using Software for Productivity	Global Operations Strategy Options 53
Analysis 24	Summary 55
Solved Problems 25	Key Terms 55
Problems 25	Ethical Dilemma 56
CASE STUDIES 28	Discussion Questions 56
Chitale Dairy Takes Cows to Cloud 28 Endnotes 28	Using Software to Solve Outsourcing Problems 57
Self Test 29	Solved Problems 58

νi

xix

XXVII

Problems 59	Chapter 4 Forecasting 113
CASE STUDIES 61	GLOBAL COMPANY PROFILE: WALT DISNEY PARKS &
Juniper Networks to Benefit From Digital India	RESORTS 114
Programme 61	What is Forecasting? 116
Endnotes 62	Forecasting Time Horizons 116
Self Test 62	Types of Forecasts 117
Chapter 3 Project Management 63	The Strategic Importance of Forecasting 118
GLOBAL COMPANY PROFILE: BECHTEL GROUP 64	Supply-Chain Management 118
The Importance of Project Management 66	Human Resources 118
Project Planning 66	Capacity 118
The Project Manager 67	Seven Steps in the Forecasting System 119
Work Breakdown Structure 68	Forecasting Approaches 120
Project Scheduling 69	Overview of Qualitative Method 120
Project Controlling 70	Overview of Quantitative Methods 120
Project Management Techniques: PERT and	Time-Series Forecasting 121
CPM 72	Decomposition of a Time Series 121
The Framework of PERT and CPM 72	Naive Approach 122
Network Diagrams and Approaches 73	Moving Averages 123
Activity-on-Node Example 74	Exponential Smoothing 126
Activity-on-Arrow Example 76	Measuring Forecast Error 127
Determining the Project Schedule 77	Exponential Smoothing with Trend
Forward Pass 78	Adjustment 130
Backward Pass 79	Trend Projections 134 Seasonal Variations in Data 137
Calculating Slack Time and Identifying the Critical	Cyclical Variations in Data 142
Path(s) 81	Associative Forecasting Methods: Regression
Variability in Activity Times 83	and Correlation Analysis 143
Three Time Estimates in PERT 84	Using Regression Analysis for
Probability of Project Completion 86	Forecasting 143
Cost-Time Trade-Offs and Project Crashing 89	Standard Error of the Estimate 145
A Critique of PERT and CPM 93	Correlation Coefficients for Regression
Using Microsoft Project to Manage	Lines 147
Projects 93	Multiple-Regression Analysis 148
Summary 97	Monitoring and Controlling Forecasts 150
Key Terms 97	Adaptive Smoothing 152
Ethical Dilemma 98	Focus Forecasting 152
Discussion Questions 98	Forecasting in the Service Sector 153
Solved Problems 99	Summary 154
Problems 102	Key Terms 155
CASE STUDIES 109	Ethical Dilemma 155
Southwestern University: (A) 109	Discussion Questions 155
Agra-Lucknow Expressway 110	Using Software in Forecasting 156
Endnotes 111	Solved Problems 157
Self Test 111	CONTROL TO

Problems 160
CASE STUDIES 168
Southwestern University: (B) 168

Estimating Bandwidth of Wi-Fi in Rural India 169

Endnotes 170 Self Test 170

PART TWO Designing Operations

171

Chapter 5 Design of Goods and Services 171

GLOBAL COMPANY PROFILE: REGAL MARINE 172

Goods and Services Selection 174

Product Strategy Options Support Competitive Advantage 175

Product Life Cycles 176

Life Cycle and Strategy 177

Product-by-Value Analysis 177

Generating New Products 178

Product Development 179

Product Development System 179

Quality Function Deployment (QFD) 180

Organizing for Product Development 182

Manufacturability and Value Engineering 183

Issues for Product Design 183

Robust Design 183

Modular Design 184

Computer-Aided Design (CAD) and Computer-

Aided Manufacturing (CAM) 184

Virtual Reality Technology 185

Value Analysis 186

Sustainability and Life Cycle Assessment

(LCA) 186

Product Development Continuum 186

Purchasing Technology by Acquiring a

Firm 187

Joint Ventures 188

Alliances 188

Defining a Product 189

Make-or-Buy Decisions 190

Group Technology 191

Documents for Production 191

Product Life-Cycle Management (PLM) 192

Service Design 193

Process-Chain-Network (PCN) Analysis 193

Adding Service Efficiency 195

Documents for Services 196

Application of Decision Trees to Product

Design 196

Transition to Production 198

Summary 199

Key Terms 199

Ethical Dilemma 200

Discussion Questions 200

Solved Problem 201

Problems 202

CASE STUDIES 204

De Mar's Product Strategy 204

Micromax Dominating the Indian Market 205

Endnotes 205

Self Test 206

Supplement 5 Sustainability in the Supply Chain 207

Corporate Social Responsibility 208

Sustainability 209

Systems View 209

Commons 209

Triple Bottom Line 210

Design and Production for Sustainability 213

Product Design 213

Production Process 215

Logistics 216

End-of-Life Phase 218

Regulations and Industry Standards 219

International Environmental Policies and

Standards 220

Summary 222

Key Terms 222

Discussion Questions 222

Solved Problems 222

Problems 224

Endnotes 226

Self Test 226

Chapter 6 Managing Quality 227	Supplement 6 Statistical Process Control 26
GLOBAL COMPANY PROFILE: ARNOLD PALMER	Statistical Process Control (SPC) 262
HOSPITAL 228	Control Charts for Variables 264
Quality and Strategy 230	The Central Limit Theorem 265
Defining Quality 231	Setting Mean Chart Limits (x-Charts) 266
Implications of Quality 232	Setting Range Chart Limits (R-Charts) 268
Malcolm Baldrige National Quality Award 232	Using Mean and Range Charts 270
ISO 9000 International Quality Standards 232	Control Charts for Attributes 273
Cost of Quality (COQ) 233	Managerial Issues and Control Charts 277
Ethics and Quality Management 234	Process Capability 278
Total Quality Management 234	Process Capability Ratio (C _p) 279
Continuous Improvement 235	Process Capability Index (C _{pk}) 279
Six Sigma 235	Acceptance Sampling 281
Employee Empowerment 236	Operating Characteristic Curve 282
Benchmarking 237	Average Outgoing Quality 283
Just-in-Time (JIT) 239	Summary 285
Taguchi Concepts 239	Key Terms 285
Knowledge of TQM Tools 240	Discussion Questions 285
Tools of TQM 241	Using Software for SPC 285
Check Sheets 241	Solved Problems 286
Scatter Diagrams 242	Problems 288
Cause-and-Effect Diagrams 242	CASE STUDIES 294
Pareto Charts 243	Bayfield Mud Company 294
Flowcharts 244	Endnotes 295
Histograms 245	Self Test 296
Statistical Process Control (SPC) 245	331 1331 233
The Role of Inspection 246	Chapter 7 Process Strategy 297
When and Where to Inspect 246	GLOBAL COMPANY PROFILE: HARLEY-DAVIDSON 298
Source Inspection 247	Four Process Strategies 300
Service Industry Inspection 247	Process Focus 301
Inspection of Attributes versus Variables 249	Repetitive Focus 302
TQM in Services 249	Product Focus 302
Summary 252	Mass Customization Focus 302
Key Terms 252	Process Comparison 304
Ethical Dilemma 252	Selection of Equipment 307
Discussion Questions 252	Process Analysis and Design 308
Solved Problems 253	Flowchart 309
Problems 253	Time-Function Mapping 309
CASE STUDIES 256	Process Charts 309
Southwestern University: (C) 256	Value-Stream Mapping 310
Six Sigma in an Indian University Library 257	Service Blueprinting 312
Endnotes 259	Special Considerations for Service Process
Self Test 259	Design 313

Production Technology 315	Applying Investment Analysis to Strategy-Driven
Machine Technology 315	Investments 346
Automatic Identification Systems (AISs) and	Investment, Variable Cost, and Cash Flow 346
RFID 316	Net Present Value 347
Process Control 316	Summary 350
Vision Systems 316	Key Terms 350
Robots 317	Discussion Questions 350
Automated Storage and Retrieval Systems (ASRSs) 317	Using Software for Break-Even Analysis 350 Solved Problems 351
Automated Guided Vehicles (AGVs) 317	Problems 354
Flexible Manufacturing Systems (FMSs) 317	Endnote 358
Computer-Integrated Manufacturing (CIM) 318	Self Test 359
Technology in Services 319	
Process Redesign 319	Chapter 8 Location Strategies 361
Summary 320	GLOBAL COMPANY PROFILE: FEDEX 362
Key Terms 321	The Strategic Importance of Location 364
Ethical Dilemma 321	Factors That Affect Location Decisions 365
Discussion Questions 321	Labor Productivity 365
Solved Problem 322	Exchange Rates and Currency Risk 367
Problems 322	Costs 367
CASE STUDIES 324	Political Risk, Values, and Culture 368
Value Stream Mapping (VSM) for Lean	Proximity to Markets 368
Implementation in Indian Firm 324	Proximity to Suppliers 368
Endnotes 325	Proximity to Competitors (Clustering) 368
Self Test 325	Methods of Evaluating Location Alternatives 369
Supplement 7 Capacity and Constraint	The Factor-Rating Method 369
Management 327	Locational Cost–Volume Analysis 371
Capacity 328	Center-of-Gravity Method 373
Design and Effective Capacity 329	Transportation Model 375
Capacity and Strategy 332	Service Location Strategy 375
Capacity Considerations 332	Geographic Information Systems 376
Managing Demand 332	Summary 379
Service-Sector Demand and Capacity	Key Terms 380
Management 334	Ethical Dilemma 380
Bottleneck Analysis and the Theory of Constraints 335	Discussion Questions 380
Theory of Constraints 339	Using Software to Solve Location
Bottleneck Management 339	Problems 381
Break-Even Analysis 340	Solved Problems 381
Single-Product Case 341	Problems 383
Multiproduct Case 342	CASE STUDIES 389
Reducing Risk with Incremental Changes 344	D-Mart Emerged as Top Retailer 389
Applying Expected Monetary Value (EMV) to Capacity Decisions 345	Endnote 390 Self Test 390

Chapter 9 Layout Strategies 391	Chapter 10 Human Resources, Job Design, and Work
GLOBAL COMPANY PROFILE: McDONALD'S 392	Measurement 433
The Strategic Importance of Layout Decisions 394	GLOBAL COMPANY PROFILE: RUSTY WALLACE'S NASCAR RACING TEAM 434
Types of Layout 395	Human Resource Strategy for Competitive
Office Layout 396	Advantage 436
Retail Layout 398	Constraints on Human Resource Strategy 436
Servicescapes 399	Labor Planning 437
Warehouse and Storage Layouts 400	Employment-Stability Policies 437
Cross-Docking 401	Work Schedules 438
Random Stocking 401	Job Classifications and Work Rules 438
Customizing 402	Job Design 439
Fixed-Position Layout 402	Labor Specialization 439
Process-Oriented Layout 404	Job Expansion 439
Computer Software for Process-Oriented	Psychological Components of Job Design 440
Layouts 408	Self-Directed Teams 440
Work Cells 409	Motivation and Incentive Systems 442
Requirements of Work Cells 410	Ergonomics and the Work Environment 443
Staffing and Balancing Work Cells 411	Methods Analysis 445
The Focused Work Center and the Focused	The Visual Workplace 447
Factory 412	Labor Standards 448
Repetitive and Product-Oriented	Historical Experience 449
Layout 413	Time Studies 449
Assembly-Line Balancing 414	Predetermined Time Standards 454
Summary 419	Work Sampling 457
Key Terms 419	Ethics 460
Ethical Dilemma 419	Summary 460
Discussion Questions 420	Key Terms 460
Solved Problems 420	Ethical Dilemma 461
Problems 424	Discussion Questions 461
CASE STUDIES 430	Solved Problems 462
State Automobile License Renewals 430	Problems 465
Traditional Retail Stores go for a Modern Makeover in India 431	CASE STUDIES 469
Endnotes 432	Time and Motion Study in a Hospital in
Self Test 432	Hyderabad 469
Jen 1651 402	Endnotes 469
	Self Test 470
DART TURES - Manage 'ex Occurs's	474
PART THREE Managing Operations	471

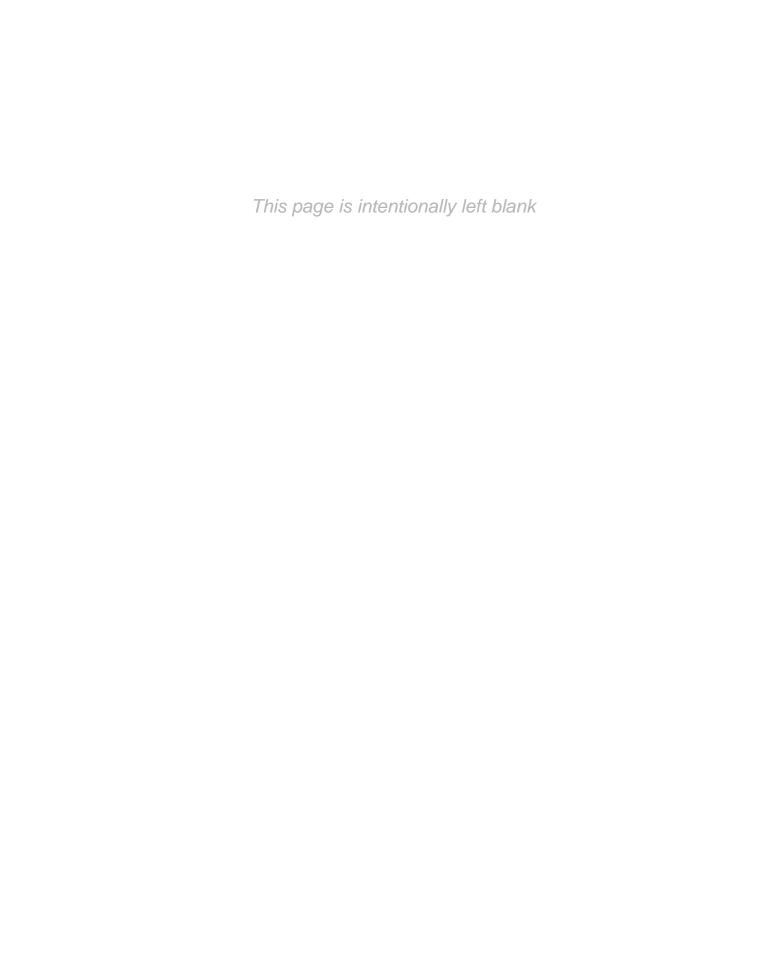
Chapter 11 Supply Chain Management 471

GLOBAL COMPANY PROFILE: DARDEN RESTAURANTS 472

The Supply Chain's Strategic Importance 474

Sourcing Issues: Make-or-Buy and Outsourcing 476

Make-or-Buy Decisions 476


Outsourcing 477

Six Sourcing Strategies 477	Supplement 11 Supply Chain Management
Many Suppliers 477	Analytics 503
Few Suppliers 478	Techniques for Evaluating Supply Chains 504
Vertical Integration 478	Evaluating Disaster Risk in the Supply
Joint Ventures 479	Chain 504
Keiretsu Networks 479	Managing the Bullwhip Effect 506
Virtual Companies 479	A Bullwhip Effect Measure 508
Supply Chain Risk 480	Supplier Selection Analysis 509
Risks and Mitigation Tactics 481	Transportation Mode Analysis 510
Security and JIT 482	Warehouse Storage 512
Managing the Integrated Supply Chain 482	Summary 513
Issues in Managing the Integrated Supply Chain 483	Discussion Questions 513
Opportunities in Managing the Integrated Supply Chain 483	Solved Problems 513 Problems 516
Building the Supply Base 486	Self Test 519
Supplier Evaluation 486	Chapter 12 Inventory Management 521
Supplier Development 486	Chapter 12 Inventory Management 521
Negotiations 487	GLOBAL COMPANY PROFILE: AMAZON.COM 522
Contracting 487	The Importance of Inventory 524
Centralized Purchasing 487	Functions of Inventory 524
E-Procurement 488	Types of Inventory 525
Logistics Management 489	Managing Inventory 525
Shipping Systems 489	ABC Analysis 525
Warehousing 490	Record Accuracy 527
Third-Party Logistics (3PL) 491	Cycle Counting 528
Distribution Management 491	Control of Service Inventories 529
Ethics and Sustainable Supply Chain	Inventory Models 530
Management 492	Independent vs. Dependent Demand 530
Supply Chain Management Ethics 493	Holding, Ordering, and Setup Costs 531
Establishing Sustainability in Supply Chains 493 Measuring Supply Chain Performance 494	Inventory Models for Independent Demand 531
Assets Committed to Inventory 494 Benchmarking the Supply Chain 497	The Basic Economic Order Quantity (EOQ) Model 532
The SCOR Model 497	Minimizing Costs 532
Summary 498	Reorder Points 537
Key Terms 498	Production Order Quantity Model 539
Ethical Dilemma 499	Quantity Discount Models 541
Discussion Questions 499	Probabilistic Models and Safety Stock 545
Solved Problems 499	Other Probabilistic Models 549
Problems 500	Single-Period Model 551
CASE STUDIES 501	Fixed-Period (P) Systems 553
	Summary 554
PinkBlue.in An Integrated Supply Chain Solution 501 Endnote 502	Key Terms 554
Self Test 502	Ethical Dilemma 554
JOH 1001 002	

xvi TABLE OF CONTENTS

Discussion Questions 554	Chapter 14 Material Requirements Planning (MRP)
Using Software to Solve Inventory	and ERP 605
Problems 555	GLOBAL COMPANY PROFILE: WHEELED COACH 606
Solved Problems 556	Dependent Demand 608
Problems 559	Dependent Inventory Model
CASE STUDIES 565	Requirements 608
Zhou Bicycle Company 565	Master Production Schedule 609
Parker Hi-Fi Systems 566	Bills of Material 610
Inventory Management in Rural Public Health Facilities in Udupi District 566	Accurate Inventory Records 613
Endnotes 567	Purchase Orders Outstanding 613
Self Test 567	Lead Times for Components 613
och lest our	MRP Structure 614
Chapter 13 Aggregate Planning and S&OP 569	MRP Management 618
GLOBAL COMPANY PROFILE: FRITO-LAY 570	MRP Dynamics 618
The Planning Process 572	MRP Limitations 619
Sales and Operations Planning 573	Lot-Sizing Techniques 619
The Nature of Aggregate Planning 574	Extensions of MRP 623
Aggregate Planning Strategies 576	Material Requirements Planning II (MRP II) 623
Capacity Options 576	Closed-Loop MRP 625
Demand Options 577	Capacity Planning 625
Mixing Options to Develop a Plan 578	MRP in Services 627
Methods for Aggregate Planning 579	Distribution Resource Planning (DRP) 628
Graphical Methods 579	Enterprise Resource Planning (ERP) 628
Mathematical Approaches 585	ERP in the Service Sector 630
Aggregate Planning in Services 587	Summary 631
Restaurants 588	Key Terms 632
Hospitals 588	Ethical Dilemma 632
National Chains of Small Service Firms 588	Discussion Questions 632
Miscellaneous Services 588	Solved Problems 633
Airline Industry 590	Problems 636
Revenue Management 590	CASE STUDIES 640
Summary 593	Critical Success Factors (CSF) for Implementation of ERP at Indian SMEs 640
Key Terms 593	Endnotes 640
Ethical Dilemma 593	Self Test 641
Discussion Questions 594	
Using Software for Aggregate Planning 594	Chapter 15 Short-Term Scheduling 643
Solved Problems 596	GLOBAL COMPANY PROFILE: ALASKA AIRLINES 644
Problems 598	The Importance of Short-Term
CASE STUDIES 603	Scheduling 646
Dynamic Pricing Introduced in Indian	Scheduling Issues 647
Railways 603	Forward and Backward Scheduling 648
Endnote 604	Finite and Infinite Loading 649
Self Test 604	Scheduling Criteria 649

Scheduling Process-Focused Facilities 649	Lean Organizations 697
Loading Jobs 650	Building a Lean Organization 697
Input–Output Control 650	Lean Sustainability 698
Gantt Charts 652	Lean in Services 698
Assignment Method 653	Summary 700
Sequencing Jobs 656	Key Terms 700
Priority Rules for Sequencing Jobs 656	Ethical Dilemma 700
Critical Ratio 660	Discussion Questions 700
Sequencing N Jobs on Two Machines:	Solved Problem 701
Johnson's Rule 661	Problems 701
Limitations of Rule-Based Sequencing Systems 663	CASE STUDIES 703
Finite Capacity Scheduling (FCS) 663	Indigo India's Largest Carrier 703 Endnote 703
Scheduling Services 664	
Scheduling Service Employees with Cyclical	Self Test 704
Scheduling 666	Chapter 17 Maintenance and Reliability 705
Summary 668	GLOBAL COMPANY PROFILE: ORLANDO UTILITIES
Key Terms 668	COMMISSION 706
Ethical Dilemma 669	The Strategic Importance of Maintenance
Discussion Questions 669	and Reliability 708
Solved Problems 669	Reliability 709
Problems 672	System Reliability 709
CASE STUDIES 676	Providing Redundancy 712
Old Oregon Wood Store 676	Maintenance 714
Endnotes 677	Implementing Preventive Maintenance 714
Self Test 677	Increasing Repair Capabilities 718
Chapter 16 Lean Operations 679	Autonomous Maintenance 718
	Total Productive Maintenance 719
GLOBAL COMPANY PROFILE: TOYOTA MOTOR CORPORATION 680	Summary 719
Lean Operations 682	Key Terms 719
Eliminate Waste 682	Ethical Dilemma 720
Remove Variability 684	Discussion Questions 720
Improve Throughput 684	Solved Problems 720
Lean and Just-in-Time 685	Problems 721
Supplier Partnerships 685	CASE STUDY 723
Lean Layout 687	Total Productive Maintenance Implementation in a
Lean Inventory 688	Indian Tube Mills 723
Lean Scheduling 691	Self Test 724
_	Appendix A1
Lean Quality 695 Lean and the Toyota Production System 695	Bibliography B1
Continuous Improvement 695	Name Index 11
Respect for People 696	General Index 15
Processes and Standard Work Practice 696	301101.31 IIIAAN IV
1 10003303 and Standard Work I lactice 030	

Preface

Welcome to your operations management (OM) course. In this book, we present a state-of-the-art view of the operations function. Operations is an exciting area of management that has a profound effect on productivity. Indeed, few other activities have as much impact on the quality of our lives. The goal of this text is to present a broad introduction to the field of operations in a realistic, practical manner. Even if you are not planning on a career in the operations area, you will likely be working with people in operations. Therefore, having a solid understanding of the role of operations in an organization will be of substantial benefit to you. This book will also help you understand how OM affects society and your life. Certainly, you will better understand what goes on behind the scenes when you attend a concert or major sports event; purchase a bag of Frito-Lay potato chips; buy a meal at an Olive Garden or a Hard Rock Cafe; place an order through Amazon.com; board a flight on Alaska Airlines; or enter a hospital for medical care. More than one and a half million readers of our earlier editions seem to have endorsed this premise.

We welcome comments by email from our North American readers and from students using the International edition, the Indian edition, the Arabic edition, and our editions in Portuguese, Spanish, Turkish, Indonesian, and Chinese. Hopefully, you will find this material useful, interesting, and even exciting.

Lean Operations

In previous editions, we sought to explicitly differentiate the concepts of just-in-time, Lean, and Toyota Production System in Chapter 16. However, there is significant overlap and interchangeability among those three concepts, so we have revised Chapter 16 to incorporate the three concepts into an overall concept of "Lean." The chapter suggests that students view Lean as a comprehensive integrated operations strategy that sustains competitive advantage and results in increased returns to all stakeholders.

Instructor Resources

At the Instructor Resource Center, http://www.pearsoned.co.in/JayHeizer/ instructors can easily register to gain access to a variety of instructor resources available with this text in downloadable format.

The following supplements are available with this text:

Instructor's Resource Manual

The Instructor's Resource Manual, updated by co-author Chuck Munson, contains many useful resources for instructors—PowerPoint presentations with annotated notes.

Instructor's Solutions Manual

The Instructor's Solutions Manual, written by the authors, contains the answers to all of the discussion questions, *Ethical Dilemmas*, Active Models, and cases in the text, as well as worked-out solutions to all the end-of-chapter problems, additional homework problems, and additional case studies.

PowerPoint Presentations

An extensive set of PowerPoint presentations, created by Professor Jeff Heyl of Lincoln University, is available for each chapter. With well over 2,000 slides, this set has excellent color and clarity.

Test Bank/TestGen® Computerized Test Bank

The test bank, updated by James Roh, contains a variety of true/false, multiple-choice, short-answer, and essay questions, along with a selection of written problems, for each chapter. Test questions are annotated with the following information:

- Difficulty level
- Type: multiple-choice, true/false, short-answer, essay, problem
- Learning objective

Acknowledgments

We thank the many individuals who were kind enough to assist us in this endeavor. The following professors provided insights that guided us in this edition (their names are in bold) and in prior editions:

ALABAMA

John Mittenthal

University of Alabama

Philip F. Musa

University of Alabama at

Birmingham

William Petty

University of Alabama

Doug Turner

Auburn University

ALASKA

Paul Jordan

University of Alaska

ARIZONA

Susan K. Norman

Northern Arizona University

Scott Roberts

Northern Arizona University

Vicki L. Smith-Daniels

Arizona State University

Susan K. Williams

Northern Arizona University

CALIFORNIA

Jean-Pierre Amor

University of San Diego

Moshen Attaran

California State

University-Bakersfield

Ali Behnezhad

California State

University-Northridge

Joe Biggs

California Polytechnic State

University

Lesley Buehler

Ohlone College

Rick Hesse

Pepperdine

Ravi Kathuria

Chapman University

Richard Martin

California State

University-Long Beach

Ozgur Ozluk

San Francisco State University

Zinovy Radovilsky

California State

University-Hayward

Robert J. Schlesinger

San Diego State University

V. Udavabhanu

San Francisco State University

Rick Wing

San Francisco State University

COLORADO

Peter Billington

Colorado State University-Pueblo

Gregory Stock

University of Colorado at Colorado

Springs

CONNECTICUT

David Cadden

Quinnipiac University

Larry A. Flick

Norwalk Community Technical

College

FLORIDA

Joseph P. Geunes

University of Florida

Rita Gibson

Embry-Riddle Aeronautical

University

Jim Gilbert

Rollins College

Donald Hammond

University of South Florida

Wende Huehn-Brown

St. Petersburg College

Adam Munson

University of Florida

Ronald K. Satterfield

University of South Florida

Theresa A. Shotwell

Florida A&M University

Jeff Smith

Florida State University

GEORGIA

John H. Blackstone

University of Georgia

Johnny Ho

Columbus State University

John Hoft

Columbus State University

John Miller

Mercer University

Nikolay Osadchiy

Emory University

Spyros Reveliotis

Georgia Institute of Technology

ILLINOIS

Suad Alwan

Chicago State University

Lori Cook

DePaul University

Matt Liontine

University of Illinois-Chicago

Zafar Malik

Governors State University

INDIANA

Barbara Flynn

Indiana University

B.P. Lingeraj

Indiana University

XXII PREFACE

Frank Pianki Anderson University

Stan Stockton *Indiana University*

Jerry Wei

University of Notre Dame

Jianghua Wu
Purdue University
Xin Zhai

Purdue University

IOWA

Debra Bishop

Drake University

Kevin Watson

Iowa State University

Lifang Wu
University of Iowa

KANSAS

William Barnes
Emporia State University

George Heinrich
Wichita State University

Sue Helms

Wichita State University

Hugh Leach

Washburn University

M.J. Riley

Kansas State University

Teresita S. Salinas Washburn University

Avanti P. Sethi Wichita State University

KENTUCKY

Wade Ferguson
Western Kentucky University
Kambiz Tabibzadeh
Eastern Kentucky University

LOUISIANA

Roy Clinton
University of Louisiana at Monroe
L. Wayne Shell (retired)
Nicholls State University

MARYLAND

Eugene Hahn
Salisbury University
Samuel Y. Smith, Jr.
University of Baltimore

MASSACHUSETTS

Peter Ittig

University of Massachusetts

Jean Pierre Kuilboer

University of Massachusetts-Boston

Dave Lewis

University of Massachusetts-Lowell

Mike Maggard (retired)
Northeastern University

Peter Rourke

Wentworth Institute of Technology

Daniel Shimshak

University of Massachusetts-Boston

Ernest Silver Curry College

Yu Amy Xia

Northeastern University

MICHIGAN

Darlene Burk

Western Michigan University

Damodar Golhar

Western Michigan University

Dana Johnson

Michigan Technological University

Doug Moodie

Michigan Technological University

MINNESOTA

Rick Carlson

Metropolitan State University

John Nicolay

University of Minnesota

Michael Pesch

St. Cloud State University

Manus Rungtusanatham *University of Minnesota*

Kingshuk Sinha

University of Minnesota

Peter Southard

University of St. Thomas

MISSOURI

Shahid Ali

Rockhurst University

Stephen Allen

Truman State University

Sema Alptekin

University of Missouri-Rolla

Gregory L. Bier

University of Missouri–Columbia

James Campbell

University of Missouri-St. Louis

Wooseung Jang

University of Missouri-Columbia

Mary Marrs

University of Missouri–Columbia

A. Lawrence Summers *University of Missouri*

NEBRASKA

Zialu Hug

University of Nebraska-Omaha

NEVADA

Joel D. Wisner

University of Nevada, Las Vegas

NEW JERSEY

Daniel Ball

Monmouth University

Leon Bazil

Stevens Institute of Technology

Mark Berenson

Montclair State University

Grace Greenberg

Rider University

Joao Neves

The College of New Jersey

Leonard Presby

William Paterson University

Fave Zhu

Rowan University

NEW MEXICO

William Kime

University of New Mexico

NEW YORK

Theodore Boreki *Hofstra University*John Drabouski

DeVry University

Richard E. Dulski Daemen College

Jonatan Jelen Baruch College

Beate Klingenberg Marist College

Donna Mosier SUNY Potsdam Elizabeth Perry

SUNY Binghamton

William Reisel St. John's University

Kaushik Sengupta Hofstra University

Girish Shambu

Canisius College

Rajendra Tibrewala

New York Institute of Technology

NORTH CAROLINA

Coleman R. Rich

Elon University

Ray Walters

Fayetteville Technical Community College

OHIO

Victor Berardi

Kent State University

Andrew R. Thomas

University of Akron

OKLAHOMA

Wen-Chyuan Chiang University of Tulsa

OREGON

Anne Deidrich Warner Pacific College

Gordon Miller

Portland State University

John Sloan

Oregon State University

PENNSYLVANIA

Henry Crouch

Pittsburgh State University

Jeffrey D. Heim

Pennsylvania State University

James F. Kimpel

University of Pittsburgh

Ian M. Langella

Shippensburg University

Prafulla Oglekar

LaSalle University

David Pentico

Duquesne University

Stanford Rosenberg

LaRoche College
Edward Rosenthal
Temple University

Susan Sherer Lehigh University Howard Weiss Temple University

RHODE ISLAND

Laurie E. Macdonald Bryant College John Swearingen Bryant College Susan Sweeney Providence College

SOUTH CAROLINA

Jerry K. Bilbrey Anderson University Larry LaForge Clemson University Emma Jane Riddle

TENNESSEE

Joseph Blackburn Vanderbilt University

Winthrop University

Hugh Daniel Lipscomb University

Cliff Welborn

Middle Tennessee State University

TEXAS

Warren W. Fisher

Stephen F. Austin State University

Garland Hunnicutt
Texas State University

Gregg Lattier *Lee College*

Henry S. Maddux III

Sam Houston State University

Arunachalam Narayanan Texas A&M University Ranga V. Ramasesh Texas Christian University

Victor Sower

San Houston State University

Cecelia Temponi
Texas State University
John Visich-Disc
University of Houston
Dwayne Whitten
Texas A&M University
Bruce M. Woodworth

UTAH

William Christensen
Dixie State College of Utah
Shane J. Schvaneveldt
Weber State University
Madeline Thimmes (retired)
Utah State University

University of Texas-El Paso

VIRGINIA

Andy Litteral
University of Richmond
Arthur C. Meiners, Jr.
Marymount University
Michael Plumb

Tidewater Community College

WASHINGTON

Mark McKay

University of Washington

XXIV PREFACE

Chris Sandvig
Western Washington University
John Stee
Oregon Institute of Technology

WASHINGTON, DC

Narendrea K. Rustagi *Howard University*

WEST VIRGINIA

Charles Englehardt
Salem International University
Daesung Ha
Marshall University
John Harpell
West Virginia University
James S. Hawkes
University of Charleston

WISCONSIN

James R. Gross
University of Wisconsin–Oshkosh
Marilyn K. Hart (retired)
University of Wisconsin–Oshkosh
Niranjan Pati
University of Wisconsin–La Crosse
X. M. Safford
Milwaukee Area Technical College
Rao J. Taikonda

University of Wisconsin-Oshkosh

WYOMING

Cliff Asay University of Wyoming

INTERNATIONAL

Steven Harrod
Technical University of Denmark
Robert D. Klassen
University of Western Ontario
Ronald Lau
Hong Kong University of Science
and Technology

INDIA

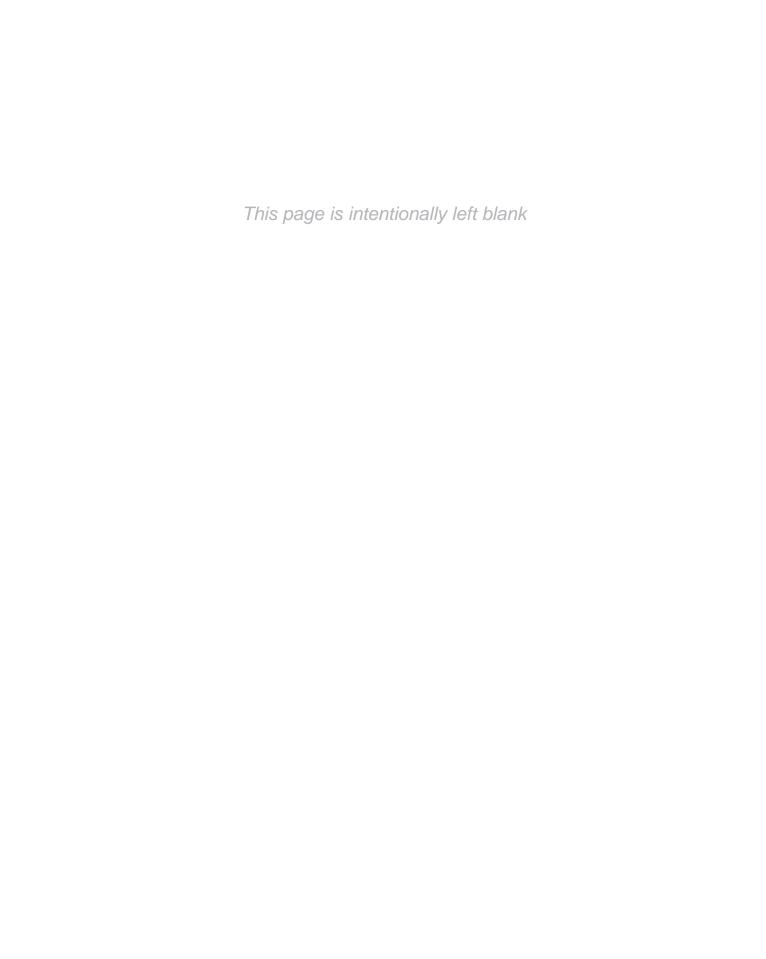
Amarendu Nandy Indian Institute of Management, Ranchi In addition, we appreciate the wonderful people at Pearson Education who provided both help and advice: Stephanie Wall, our superb editor-in-chief; Lenny Ann Kucenski, our dynamo marketing manager; Linda Albelli, our editorial assistant; Courtney Kamauf and Andra Skaalrud for their fantastic and dedicated work; Jeff Holcomb, our project manager team lead; Claudia Fernandes, our program manager; Jacqueline Martin, our senior project manager; and Heidi Allgair, our project manager at Cenveo® Publisher Services. We are truly blessed to have such a fantastic team of experts directing, guiding, and assisting us.

In this edition, we were thrilled to be able to include one of the country's premier airlines, Alaska Airlines, in our ongoing Video Case Study series. This was possible because of the wonderful efforts of COO/EVP-Operations Ben Minicucci, and his superb management team. This included John Ladner (Managing Director, Seattle Station Operations), Wayne Newton (Managing Director, Station Operations Control), Mike McQueen (Director, Schedule Planning), Chad Koehnke (Director, Planning and Resource Allocation), Cheryl Schulz (Executive Assistant to EVP Minicucci), Jeffrey Butler (V.P. Airport Operations & Customer Service), Dan Audette (Manager of Operations Research and Analysis), Allison Fletcher (Process Improvement Manager), Carlos Zendejas (Manager Line-Flying Operations, Pilots), Robyn Garner (Flight Attendant Trainer), and Nikki Meier and Sara Starbuck (Process Improvement Facilitators). We are grateful to all of these fine people, as well as the many others that participated in the development of the videos and cases during our trips to the Seattle headquarters.

We also appreciate the efforts of colleagues who have helped to shape the entire learning package that accompanies this text. Professor Howard Weiss (Temple University) developed the Active Models; Professor Jeff Heyl (Lincoln University) created the PowerPoint presentations; and Professor James Roh (Rowan University) updated the test bank. Beverly Amer (Northern Arizona University) produced and directed the video series; Professors Keith Willoughby (Bucknell University) and Ken Klassen (Brock University) contributed the two Excel-based simulation games; and Professor Gary LaPoint (Syracuse University) developed the Microsoft Project crashing exercise and the dice game for SPC. We have been fortunate to have been able to work with all these people.

We wish you a pleasant and productive introduction to operations management.

JAY HEIZER


Texas Lutheran University 1000 W. Court Street Seguin, TX 78155 Email: jheizer@tlu.edu

BARRY RENDER

Graduate School of Business Rollins College Winter Park, FL 32789 Email: brender@rollins.edu

CHUCK MUNSON

Carson College of Business Washington State University Pullman, WA 99164-4746 Email: munson@wsu.edu

Preface to the Indian Edition

The purpose of the adaptation of the 12th edition of this book on Operations Management is to incorporate the new concepts that have been developed due to the changes in technology and globalization. The strength of this adapted edition is to actively engage the students by including the real-life examples of Indian companies along with the empirical Indian researches that are carried out in the area of operations management in India.

In this edition, we show you how OM concepts are applied in India. Through Indian case studies we take a look at how an Indian dairy company is improving productivity by using technology (chapter 1). Chapter 2 has a case study on how Juniper Networks, an American multinational is planning to be part of the Digital India programme. Chapter 3 case study focusses on how Agra-Lucknow Expressway project was executed. In chapter 4 case study we examined how bandwidth of Wi-Fi in rural India is estimated. In the case study in chapter 5, we discuss what product innovation Micromax has brought out in order to become successful in the Indian market. In chapter 6, the case study focusses on the process and benefits of Six Sigma in an Indian University library. Chapter 7 case study examines how Value Stream Mapping (VSM) was implemented in an Indian firm for lean operations. Chapter 8 case study discusses location strategy of D-Mart. The case study in chapter 9 discusses how traditional retail stores are getting a modern makeover to compete with big retailers in India. Chapter 10 discusses on process and benefits of time and motion study in a hospital in Hyderabad. Chapter 11 case study examines the benefits PinkBlue.in is having by an integrating supply chain. Chapter 12 case study discusses how inventory is handled in rural public health facilities in Udupi district. Chapter 13 case study focuses on the dynamic pricing introduced by Indian Railways. The case study in chapter 14 identifies Critical Success Factors (CSF) of ERP implementation. Chapter 16 case study discusses the factors behind Indigo Airlines, Lastly, in chapter 17, the case study focusses on the process and benefits of total productive maintenance in Indian Tube Mills.

Chapter-by-Chapter Changes

To highlight the extent of the revisions in this edition, here are a few of the changes on a chapter-by-chapter basis.

Chapter 1: Operations and Productivity

We updated Table 1.4 to reflect employment in various sectors and expanded our discussion of Lean operations. Our new case "Chaitale Dairy takes Cows to Cloud" introduces productivity improvement through technology. In addition, there is a new

"Creating Your Own Excel Spreadsheets" example for both labor productivity and multifactor productivity. Also added new OM in Action Major Indian Ports Improve Productivity.

Chapter 2: Operations Strategy in a Global Environment

We have updated Figure 2.1 to better reflect changes in the growth of world trade and Figure 2.5 to reflect product life cycle changes. Example 1 (National Architects) has been expanded to clarify factor rating calculations and is also demonstrated with a "Creating Your Own Excel Spreadsheets" presentation. A new case study Juniper Networks to benefit from Digital India programme is also added.

Chapter 3: Project Management

We rewrote and updated the Bechtel Global Company Profile and added a new section on well defined projects with the "agile" and "waterfall" approaches. There are two new OM in Action boxes: "Agile Project Management at Mastek," and "IOC Butadiene Extraction Project." A new case study "Agra-Lucknow Expressway" is also added.

Chapter 4: Forecasting

We created a new table comparing the MAD, MSE, and MAPE forecasting error measures. There are two new OM in Action boxes called "NYC's Potholes and Regression Analysis" and "Forecasting the Next Fog". A new case study Estimating Bandwidth of Wi-Fi in Rural India is also added.

Chapter 5: Design of Goods and Services

We expanded our treatment of *concurrent engineering* and added two new discussion questions. Solved Problem 5.1 has been revised. There is also new OM in Action box called "StoreKing: E Commerce in Rural India." A new case study "Micromax Dominating the Indian Market" is also added.

Supplement 5: Sustainability in the Supply Chain

We wrote a new introductory section on Corporate Social Responsibility. There is also a new OM in Action box called "Together for Sustainability (TfS) for sustainable supply chains".

Chapter 6: Managing Quality

We added new material to expand our discussion of Taguchi's quality loss function. There is a new section on SERVQUAL, and a new OM in Action box called "Flipkart Assured". A new case study Six Sigma in an Indian University Library is also added.

Supplement 6: Statistical Process Control

We added a figure on the relationship between sample size and sampling distribution. We also added raw data to Examples S2 and S3 to illustrate how ranges are computed. There is a new Excel spreadsheet to show students how to make their own c-chart. There is also a new OM in Action box called "Statistical Process Control Software".

Chapter 7: Process Strategy

We wrote a new section on machine technology and additive manufacturing. There are two new discussion questions. There is a new OM in Action box "Kolhapur Municipal Transport to use RFID". A new case study "Value Stream Mapping (VSM) for Lean Implementation" in Indian firm is also added.

Supplement 7: Capacity and Constraint Management

We added a new Table S7.1 which compares and clarifies three capacity measurements. There is a new treatment of expected output and actual output in Example S2. The discussion of bottleneck time versus throughput time has also been expanded. We have also added a new "Creating Your Own Excel Spreadsheets" example for a break-even model. There is a new OM in Action box "World's largest solar power plant in Tamil Nadu. India."

Chapter 8: Location Strategies

We added two new OM in Action boxes: "Cipla to Launch South Africa's first Biotech Manufacturing Facility" and "Denmark's Meat Cluster." We changed the notation for the center-of-gravity model to simplify the equation and provided a new "Creating Your Own Excel Spreadsheets" presentation for the center-of gravity example. A new case study "D-Mart Emerged as Top Retailer" is added.

Chapter 9: Layout Strategies

We created a new Muther grid for office relationship charting and added a spread of five layouts showing how offices have evolved over time. There is a new OM in Action box called "Solar Panels in Unconventional Layout," and there is a new graphic example of Proplanner's Flow Path Calculator. We have included a formula for idle time as a second measure of balance assignment efficiency. A new case study "Traditional Retail Stores go for a Modern Makeover in India" is added.

Chapter 10: Human Resources, Job Design, and Work Measurement

We added a new OM in Action box, "Toyota to Enhance Manufacturing Skills of Students," and revised the Operations Chart as a service example. A new case study "Time and Motion Study in a hospital in Hyderabad" is added.

Chapter 11: Supply Chain Management

We added "outsourcing" as a supply chain risk in Table 11.3. We added a new OM in Action box, "Polymers to aid the Second Green Revolution in India."

Supplement 11: Supply Chain Management Analytics

We added a major section on the topic of Warehouse Storage, with a new model for allocating inventory to storage locations. There is a new discussion question. We added a new OM in Action box, "Reducing Product Return."

Chapter 12: Inventory Management

New Programs 12.1 and 12.2 illustrate "Creating Your Own Excel Spreadsheets" for both the production run model and the single-period inventory model. The Excel function NORMSINV is introduced throughout the chapter. The Quantity Discount Model section is rewritten to illustrate the feasible solution shortcut. Solved Problem 12.5 is likewise redone with the new approach. A new case study "Inventory Management in Rural Public Health Facilities in Udupi District" is also added.

Chapter 13: Aggregate Planning and S&OP

We added a new OM in Action box, "Revenue Management Makes Disney the 'King' of the Broadway Jungle." We also provided a new "Creating Your Own Excel Spreadsheets" example for the transportation method for aggregate planning, using the Solver approach. A new case study "Dynamic Pricing Introduced in Indian Railways" is also added.

Chapter 14: Material Requirements Planning (MRP) and ERP

The MRP II example now includes greenhouse gasses. We added a new OM in Action box, "Microsoft Dynamics 365 integrates CRM and ERP." A new case study "Critical Success Factors (CSF) for implementation of ERP at Indian SMEs" is also added.

Chapter 15: Short-Term Scheduling

We begin this chapter with a new Global Company Profile featuring Alaska Airlines and the scheduling issues it faces in its northern climate. We have added two new graphics to help illustrate Forward and Backward Scheduling. There is also a new section called Performance Criteria, detailing how the choice of priority rule depends on four quantifiable criteria. We now explicitly define the performance criteria for sequencing jobs as separate numbered equations. Also, we provide an explicit formula for job lateness. There is a new OM in Action box called "Burger King Improved Operations using Matrix Centralized Time – Attendance Solution ."

Chapter 16: Lean Operations

This chapter saw a major reorganization and has been rewritten with an enhanced focus on Lean operations. There is more material on supplier partnerships and building lean organizations. We have also added a new case study called "Indigo India's largest carrier."

Chapter 17: Maintenance and Reliability

We have added a new OM in Action box, "Toshiba, Transforming India's Vertical Expansion." A new case study "Total Productive Maintenance Implementation in an Indian Tube Mills" is also added.

Finally, I would like to thank the publisher, Pearson Education for bringing out the Indian adaptation, and would also like to acknowledge the team efforts involved in getting this task accomplished in such a short time. I wish to express my love and respect to my parents for their moral support and encouragement. I am grateful to my wife Swati, sister Anju, daughter Aakriti and colleagues at IIM Ranchi who have always supported and encouraged me.

CHAPTER OUTLINE

GLOBAL COMPANY PROFILE: Hard Rock Cafe

- What Is Operations Management? 4
- Organizing to Produce Goods and Services 4
- The Supply Chain 6
- Why Study OM? 6
- What Operations Managers Do 8
- The Heritage of Operations Management 9
- Operations for Goods and Services 12
- The Productivity Challenge 14
- Current Challenges in Operations Management 21
- Ethics, Social Responsibility, and Sustainability 22

DECISIONS

- Design of Goods and Services
- Managing Quality
- **Process Strategy**
- **Location Strategies**
- Layout Strategies

- Human Resources
- Supply-Chain Management
- **Inventory Management**
- Scheduling
- Maintenance

GLOBAL COMPANY PROFILE Hard Rock Cafe

Operations Management at Hard Rock Cafe

perations managers throughout the world are producing products every day to provide for the well-being of society. These products take on a multitude of forms. They may be washing machines at Whirlpool, motion pictures at DreamWorks, rides at Disney World, or food at Hard Rock Cafe. These firms produce thousands of complex products every day—to be delivered as the customer ordered them, when the customer wants them, and where the customer wants them. Hard Rock does this for over 35 million guests worldwide every year. This is a challenging task, and the operations manager's job, whether at Whirlpool, DreamWorks, Disney, or Hard Rock, is demanding.

Hard Rock Cafe in Orlando, Florida. prepares over 3,500 meals each day. Seating more than 1,500 people, it is one of the largest restaurants in the world. But Hard Rock's operations managers serve the hot food hot and the cold food cold.

Operations managers are interested in the attractiveness of the layout, but they must be sure that the facility contributes to the efficient movement of people and material with the necessary controls to ensure that proper portions are served.

Lots of work goes into designing, testing, and costing meals. Then suppliers deliver quality products on time, every time, for well-trained cooks to prepare quality meals. But none of that matters unless an enthusiastic waitstaff, such as the one shown here, holding guitars previously owned by members of U2, is doing its job.

Orlando-based Hard Rock Cafe opened its first restaurant in London in 1971, making it over 45 years old and the granddaddy of theme restaurants. Although other theme restaurants have come and gone, Hard Rock is still going strong, with 150 restaurants in more than 53 countries—and new restaurants opening each year. Hard Rock made its name with rock music memorabilia, having started when Eric Clapton, a regular customer, marked his favorite bar stool by hanging his guitar on the wall in the London cafe. Now Hard Rock has 70,000 items and millions of dollars invested in memorabilia. To keep customers coming back time and again, Hard Rock creates value in the form of good food and entertainment.

The operations managers at Hard Rock Cafe at Universal Studios in Orlando provide more than 3,500 custom products—in this case meals—every day. These products are designed, tested, and then analyzed for

Efficient kitchen layouts, motivated personnel, tight schedules, and the right ingredients at the right place at the right time are required to delight the customer.

cost of ingredients, labor requirements, and customer satisfaction. On approval, menu items are put into production—and then only if the ingredients are available from qualified suppliers. The production process, from receiving, to cold storage, to grilling or baking or frying, and a dozen other steps, is designed and maintained to yield a quality meal. Operations managers, using the best people they can recruit and train, also prepare effective employee schedules and design efficient layouts.

Managers who successfully design and deliver goods and services throughout the world understand operations. In this text, we look not only at how Hard Rock's managers create value but also how operations managers in other services, as well as in manufacturing, do so. Operations management is demanding, challenging, and exciting. It affects our lives every day. Ultimately, operations managers determine how well we live.

LEARNING Objectives

LO 1.1 LO 1.2 LO 1.3 LO 1.4

LO 1.5

LO 1.6

Define operations management 4

Explain the distinction between goods and services 12

Explain the difference between production and productivity 15

Compute single-factor productivity 16

Compute multifactor productivity 16

Identify the critical variables in enhancing productivity 18

STUDENT TIP ♠

Let's begin by defining what this course is about.

LO 1.1 Define operations management

Production

The creation of goods and services.

Operations management (OM)

Activities that relate to the creation of goods and services through the transformation of inputs to outputs.

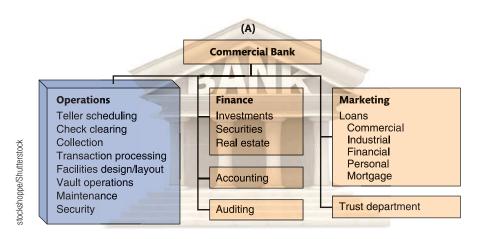
What Is Operations Management?

Operations management (OM) is a discipline that applies to restaurants like Hard Rock Cafe as well as to factories like Ford and Whirlpool. The techniques of OM apply throughout the world to virtually all productive enterprises. It doesn't matter if the application is in an office, a hospital, a restaurant, a department store, or a factory—the production of goods and services requires operations management. And the *efficient* production of goods and services requires effective applications of the concepts, tools, and techniques of OM that we introduce in this book.

As we progress through this text, we will discover how to manage operations in an economy in which both customers and suppliers are located throughout the world. An array of informative examples, charts, text discussions, and pictures illustrates concepts and provides information. We will see how operations managers create the goods and services that enrich our lives.

In this chapter, we first define *operations management*, explaining its heritage and exploring the exciting role operations managers play in a huge variety of organizations. Then we discuss production and productivity in both goods- and service-producing firms. This is followed by a discussion of operations in the service sector and the challenge of managing an effective and efficient production system.

Production is the creation of goods and services. **Operations management (OM)** is the set of activities that creates value in the form of goods and services by transforming inputs into outputs. Activities creating goods and services take place in all organizations. In manufacturing firms, the production activities that create goods are usually quite obvious. In them, we can see the creation of a tangible product such as a Sony TV or a Harley-Davidson motorcycle.

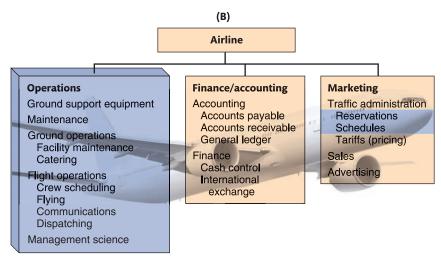

In an organization that does not create a tangible good or product, the production function may be less obvious. We often call these activities *services*. The services may be "hidden" from the public and even from the customer. The product may take such forms as the transfer of funds from a savings account to a checking account, the transplant of a liver, the filling of an empty seat on an airplane, or the education of a student. Regardless of whether the end product is a good or service, the production activities that go on in the organization are often referred to as operations, or *operations management*.

STUDENT TIP

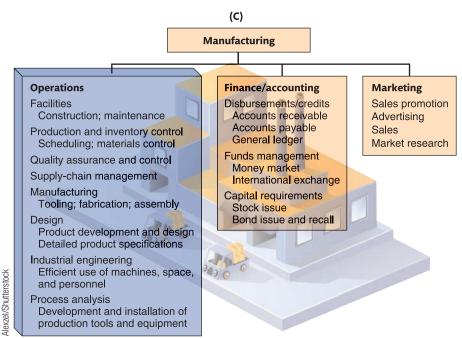
Operations is one of the three functions that every organization performs.

Organizing to Produce Goods and Services

To create goods and services, all organizations perform three functions (see Figure 1.1). These functions are the necessary ingredients not only for production but also for an organization's survival. They are:


Figure 1.1

Organization Charts for Two Service Organizations and One Manufacturing Organization


(A) a bank, (B) an airline, and (C) a manufacturing organization. The blue areas are OM activities.

STUDENT TIP

The areas in blue indicate the significant role that OM plays in both manufacturing and service firms.

Sergiy Serdyuk/Fotolia

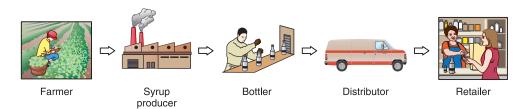
- 1. *Marketing*, which generates the demand, or at least takes the order for a product or service (nothing happens until there is a sale).
- 2. Production/operations, which creates, produces, and delivers the product.
- **3.** *Financelaccounting*, which tracks how well the organization is doing, pays the bills, and collects the money.

Universities, churches or synagogues, and businesses all perform these functions. Even a volunteer group such as the Boy Scouts of America is organized to perform these three basic functions. Figure 1.1 shows how a bank, an airline, and a manufacturing firm organize themselves to perform these functions. The blue-shaded areas show the operations functions in these firms.

The Supply Chain

Through the three functions—marketing, operations, and finance—value for the customer is created. However, firms seldom create this value by themselves. Instead, they rely on a variety of suppliers who provide everything from raw materials to accounting services. These suppliers, when taken together, can be thought of as a *supply chain*. A **supply chain** (see Figure 1.2) is a global network of organizations and activities that supply a firm with goods and services.

with goods and services. Figure 1.2


Supply chain

Soft Drink Supply Chain

A global network of organizations

and activities that supplies a firm

A supply chain for a bottle of Coke requires a beet or sugar cane farmer, a syrup producer, a bottler, a distributor, and a retailer, each adding value to satisfy a customer. Only with collaborations between all members of the supply chain can efficiency and customer satisfaction be maximized. The supply chain, in general, starts with the provider of basic raw materials and continues all the way to the final customer at the retail store.

As our society becomes more technologically oriented, we see increasing specialization. Specialized expert knowledge, instant communication, and cheaper transportation also foster specialization and worldwide supply chains. It just does not pay for a firm to try to do everything itself. The expertise that comes with specialization exists up and down the supply chain, adding value at each step. When members of the supply chain collaborate to achieve high levels of customer satisfaction, we have a tremendous force for efficiency and competitive advantage. Competition in the 21st century is not between companies; it is between *supply chains*.

STUDENT TIP Why Study OM?

Good OM managers are scarce and, as a result, career opportunities and pay are excellent.

We study OM for four reasons:

1. OM is one of the three major functions of any organization, and it is integrally related to all the other business functions. All organizations market (sell), finance (account), and produce (operate), and it is important to know how the OM activity functions. Therefore, we study how people organize themselves for productive enterprise.

- 2. We study OM because we want to know *how goods and services are produced*. The production function is the segment of our society that creates the products and services we use.
- 3. We study OM to *understand what operations managers do*. Regardless of your job in an organization, you can perform better if you understand what operations managers do. In addition, understanding OM will help you explore the numerous and lucrative career opportunities in the field.
- **4.** We study OM *because it is such a costly part of an organization*. A large percentage of the revenue of most firms is spent in the OM function. Indeed, OM provides a major opportunity for an organization to improve its profitability and enhance its service to society. Example 1 considers how a firm might increase its profitability via the production function.

Example 1

EXAMINING THE OPTIONS FOR INCREASING CONTRIBUTION

Fisher Technologies is a small firm that must double its dollar contribution to fixed cost and profit in order to be profitable enough to purchase the next generation of production equipment. Management has determined that if the firm fails to increase contribution, its bank will not make the loan and the equipment cannot be purchased. If the firm cannot purchase the equipment, the limitations of the old equipment will force Fisher to go out of business and, in doing so, put its employees out of work and discontinue producing goods and services for its customers.

APPROACH ► Table 1.1 shows a simple profit-and-loss statement and three strategic options (marketing, finance/accounting, and operations) for the firm. The first option is a *marketing option*, where excellent marketing management may increase sales by 50%. By increasing sales by 50%, contribution will in turn increase 71%. But increasing sales 50% may be difficult; it may even be impossible.

Options for Increasing Contribution				
		MARKETING OPTION ^a	FINANCE/ ACCOUNTING OPTION ^b	OM OPTION ^c
	CURRENT	INCREASE SALES REVENUE 50%	REDUCE FINANCE COSTS 50%	REDUCE PRODUCTION COSTS 20%
Sales	\$100,000	\$150,000	\$100,000	\$100,000
Costs of goods	80,000	<u>-120,000</u>	_80,000	64,000
Gross margin	20,000	30,000	20,000	36,000
Finance costs	6,000	6,000	3,000	6,000
Subtotal	14,000	24,000	17,000	30,000
Taxes at 25%	3,500	6,000	4,250	7,500
${\sf Contribution}^d$	\$ 10,500	\$ 18,000	\$ 12,750	\$ 22,500

^aIncreasing sales 50% increases contribution by \$7,500, or 71% (7,500/10,500).

^bReducing finance costs 50% increases contribution by \$2,250, or 21% (2,250/10,500).

^cReducing production costs 20% increases contribution by \$12,000, or 114% (12,000/10,500).

^dContribution to fixed cost (excluding finance costs) and profit.

The second option is a *financelaccounting option*, where finance costs are cut in half through good financial management. But even a reduction of 50% is still inadequate for generating the necessary increase in contribution. Contribution is increased by only 21%.

The third option is an *OM option*, where management reduces production costs by 20% and increases contribution by 114%.

SOLUTION ► Given the conditions of our brief example, Fisher Technologies has increased contribution from \$10,500 to \$22,500. It may now have a bank willing to lend it additional funds.

INSIGHT ► The OM option not only yields the greatest improvement in contribution but also may be the only feasible option. Increasing sales by 50% and decreasing finance cost by 50% may both be virtually impossible. Reducing operations cost by 20% may be difficult but feasible.

LEARNING EXERCISE ► What is the impact of only a 15% decrease in costs in the OM option? [Answer: A \$19,500 contribution; an 86% increase.]

Example 1 underscores the importance of the effective operations activity of a firm. Development of increasingly effective operations is the approach taken by many companies as they face growing global competition.

What Operations Managers Do

All good managers perform the basic functions of the management process. The management process consists of *planning*, *organizing*, *staffing*, *leading*, and *controlling*. Operations managers apply this management process to the decisions they make in the OM function. The 10 strategic OM decisions are introduced in Table 1.2. Successfully addressing each of these decisions requires planning, organizing, staffing, leading, and controlling.

Where Are the OM Jobs? How does one get started on a career in operations? The 10 strategic OM decisions identified in Table 1.2 are made by individuals who work in the disciplines shown in the blue areas of Figure 1.1. Business students who know their accounting, statistics, finance, and OM have an opportunity to assume entry-level positions in all of these areas. As you read this text, identify disciplines that can assist you in making these decisions. Then take courses in those areas. The more background an OM student has in accounting, statistics, information systems, and mathematics, the more job opportunities will be available. About 40% of *all* jobs are in OM.

The following professional organizations provide various certifications that may enhance your education and be of help in your career:

- APICS, the Association for Operations Management (www.apics.org)
- American Society for Quality (ASQ) (www.asq.org)
- Institute for Supply Management (ISM) (www.ism.ws)
- Project Management Institute (PMI) (www.pmi.org)
- Council of Supply Chain Management Professionals (www.cscmp.org)

Figure 1.3 shows some recent job opportunities.

10 Strategic OM Decisions

Design of goods and services
Managing quality
Process strategy
Location strategies
Layout strategies
Human resources
Supply-chain management
Inventory management
Scheduling
Maintenance

CISION	CHAPTER(S)
. Design of goods and services: Defines much of what is required of operations in each of the other OM decisions. For instance, product design usually determines the lower limits of cost and the upper limits of quality, as well as major implications for sustainability and the human resources required.	5, Supplement 5
2. Managing quality: Determines the customer's quality expectations and establishes policies and procedures to identify and achieve that quality.	6, Supplement 6
3. Process and capacity strategy: Determines how a good or service is produced (i.e., the process for production) and commits management to specific technology, quality, human resources, and capital investments that determine much of the firm's basic cost structure.	7, Supplement 7
 Location strategy: Requires judgments regarding nearness to customers, suppliers, and talent, while considering costs, infrastructure, logistics, and government. 	8
5. Layout strategy: Requires integrating capacity needs, personnel levels, technology, and inventory requirements to determine the efficient flow of materials, people, and information.	9
5. Human resources and job design: Determines how to recruit, motivate, and retain personnel with the required talent and skills. People are an integral and expensive part of the total system design.	10
7. Supply chain management: Decides how to integrate the supply chain into the firm's strategy, including decisions that determine what is to be purchased, from whom, and under what conditions.	11, Supplement 11
3. Inventory management: Considers inventory ordering and holding decisions and how to optimize them as customer satisfaction, supplier capability, and production schedules are considered.	12, 14, 16
9. Scheduling: Determines and implements intermediate- and short-term schedules that effectively and efficiently utilize both personnel and facilities while meeting customer demands.	13, 15
Maintenance: Requires decisions that consider facility capacity, production demands, and personnel necessary to maintain a reliable and stable process.	17

STUDENT TIP

An operations manager must successfully address the 10 decisions around which this text is organized.

The Heritage of Operations Management

The field of OM is relatively young, but its history is rich and interesting. Our lives and the OM discipline have been enhanced by the innovations and contributions of numerous individuals. We now introduce a few of these people, and we provide a summary of significant events in operations management in Figure 1.4.

Eli Whitney (1800) is credited for the early popularization of interchangeable parts, which was achieved through standardization and quality control. Through a contract he signed with the U.S. government for 10,000 muskets, he was able to command a premium price because of their interchangeable parts.

Frederick W. Taylor (1881), known as the father of scientific management, contributed to personnel selection, planning and scheduling, motion study, and the now popular field of ergonomics. One of his major contributions was his belief that management should be much more resourceful and aggressive in the improvement of work methods. Taylor and his colleagues, Henry L. Gantt and Frank and Lillian Gilbreth, were among the first to systematically seek the best way to produce.